CELEBES SEA - NEW SARGASSO SEA

 

 

Please use our A-Z to navigate this site or return HOME

 

 

 

 

SARGASSUM - The giant brown seaweed, having shown that it can spread from North to South Atlantic oceans, could spread to the Indian and Pacific oceans as a potentially invasive species. The proof of which (as a theory) is satellite pictures, and changing wind states. The spread witnessed here, could just as easily migrate between oceans, and thence to the bays and seas within those oceans.

 

 

 

 

 

We are concerned that with the oceans warming at a faster rate than predicted, and with the spill over of sargassum from the Sargasso Sea in the North Atlantic, to create an Atlantic Equatorial sargassum gyre, that it is almost inevitable, and we might expect to see a South Atlantic sargassum gyre in the not too distant future, in proportion to insolation, since photosynthesis is the propagator of plant life.

 

If that comes to pass, and with the Indian and Pacific oceans also warming at the same rate as the Atlantic, so generating faster currents and winds; spillage around the horns could become a distinct possibility. In which case, the Celebes Sea could be a prime contender for a micro sargassum gyre. Dependent on location current circulation conditions. Or at least may suffer a similar fate to the Caribbean Sea, where the islands/shores therein suffer beaches strewn with mounds of sargassum, to ruin fishing, tourism and marine ecology, and threaten food security.

 

ABOUT THE CELEBES SEA

 

The Celebes Sea of the western Pacific Ocean is a piece of an ancient ocean basin that formed 42 million years ago in a locale removed from any landmass. By 20 million years ago, earth crust movement had moved the basin close enough to the Indonesian and Philippine volcanoes to receive emitted debris. By 10 million years ago the Celebes Sea was inundated with continental debris, including coal, which was shed from a growing young mountain on Borneo and the basin had docked against Eurasia.

The border between the Celebes and the Sulu Sea is at the Sibutu-Basilan Ridge. Strong ocean currents, deep sea trenches and seamounts, combined with active volcanic islands, result in complex oceanographic features. 

The Celebes Sea is home to a wide variety of fish and aquatic creatures. The tropical setting and warm clear waters permit it to harbor about 580 of the world's 793 species of reef-building corals, which grow as some of the most bio-diverse coral reefs in the world, and an impressive array of marine life, including whales and dolphins, sea turtles, manta rays, eagle rays, barracuda, marlin and other reef and pelagic species. Tuna and yellowfin tuna are also abundant. In addition to high abundance of fish caught in the Celebes sea, this sea also yields other aquatic products like sea tang. 

On 23 May 2013, the Government of the Republic of the Philippines and the Government of the Republic of Indonesia signed an agreement to establish the boundary line that delimits the overlapping Exclusive Economic Zone (EEZ) between the two countries. It has been agreed that north of the boundary line will be under the jurisdiction of the Philippines (named as Mindanao Sea) and Indonesia be south of the boundary line (named Celebes Sea).

The Celebes Sea is bordered on the north by the Sulu Archipelago and Sulu Sea and Mindanao Island of the Philippines, on the east by the Sangihe Islands chain, on the south by Sulawesi's Minahasa Peninsula, and on the west by northern Kalimantan in Indonesia. It extends 420 miles (675 km) north-south by 520 mi (840 km) east-west and has a total surface area of 110,000 square miles (280,000 km2), to a maximum depth of 20,300 feet (6,200 m). South of the Cape Mangkalihat, the sea opens southwest through the Makassar Strait into the Java Sea.

 

 

 

 

Celebes Sea, also known as the Sulawesi Sea, Indonesia

 

 

 

SARGASSUM ORIGINS

 

The North Atlantic Sargasso Sea is where sargassum originates and was contained for hundreds of years, until climate change and intensive farming. But should the unthinkable happen, and the invasive species take hold in the South Atlantic, from whence to spread it's biological advantage, one can imagine the dire consequences, perhaps mirroring that now ruining the Caribbean Sea. Make no mistake, the consequences of climate change and intensive, fertilizer based farming, could become a deadly world contagion, to make other epidemics seem insignificant, in terms of potential human tragedy.

 

An animal has a means to exhaust toxic waste, essential for a healthy lifestyle. The oceans have nowhere to dump the excrement we dump in it. They just get more polluted. Except for sargassum piling onto the shores, telling us that we have reached the limit.

 

So, what are the chances of it happening? Could there be a 'Celebes Sargasso Sea,' or belt, where the present welcoming waters are turned into a cesspit of foul smelling rotten seaweeds, as they release hydrogen sulphide gas to choke visitors to their shores.

 

COMPUTER SIMULATIONS & CONTAINMENT DEVICES

 

That all depends on temperature rise of seawater, combined with nutrient supply, and circulating currents, including winds. All of which is measurable, for variable algorithmic computer simulations. As has been performed on the influx to the Caribbean Sea, via the equatorial Atlantic gyre, by scientists at the University of South Florida in St. Petersburg's College of Marine Science, who used NASA satellite observations to discover and document the largest bloom of macroalgae. Others used Global Hybrid Coordinate Ocean Model surface currents (HYCOM) (Chassignet et al., 2007) and National Centers for Environmental Prediction Reanalysis (NCEP), in their simulations.

 

But nobody has yet created a computer model of a SeaVax Calypso or Sargasso, used in various (fleet formations) to determine if such a concept could control volume escalation, before they grow to be profusely irrepressible. Indeed such simulations may help develop such concepts in terms of capacity and operations, that they may, or may not, contain the crisis, preventing a worldwide state of emergency - by nipping it in the bud.

 

THEORY DEVELOPMENT

 

At this stage of the formulation of his theory, the innovator is considering the awful prospect, based on the demonstrable and devastating spread of sargassum from the North Atlantic to the Equatorial South Atlantic, but not yet migrating to the more general south, due presumably, to temperatures not yet being to the liking of the buoyant seaweed.

 

The three major oceans are all interconnected via currents and driving winds. The main barrier to migration at present, is the temperature and level of nutrients, that is lower where the seaweed mats could pass from one to another. But that is by no means a hard point, as the melting of the polar caps indicates. We are living in changeable times, where the unthinkable is taking place, as a pace faster than previously supposed.

 

In other words, the impossible is rapidly becoming possible. And there is no containment system at present, to prevent that from happening; no international coordination, or action plan. A recipe for disaster you may think!

 

FACTUAL BACKGROUND

 

The sargassum crisis seen in the Caribbean Sea and Gulf of Mexico could be just the beginning of a worldwide plague, stemming from our inability to curb political insatiability for fossil fuels - to power failing economic strategies, based on growth, when we have already used up the planet twice over, in sustainable terms.

 

The answer to failed political policies is very often a jolly good war, (Russia Vs Ukraine). When all cock-ups get thrown to the wind in the media scrum, and a whitewash ensues, until the next band of post-war cutthroats is elected, each with their hands in the pockets of Lucifer's climate change deniers. That said, it would take a nuclear conflict to reduce earth's population significantly enough to brake global warming - but then the planet would be barren and unable to support human life. Hence, an unthinkable solution to all but the most desperate of homicidal kleptocrats: warmongers. ( W. M. Onger - Monsters Vs Aliens)

 

But, ignoring thermonuclear first strikes for now, even if we transition to renewables immediately, global warming will not reverse for 30-50 years at best, and that is with a fair political wind. Meaning that the conditions for sargassum to populate welcoming equatorial waters (rich in nutrients) around the globe, remains a distinct possibility. Such as the:

 

 

Arabian Sea

Atlantic - North & South Equatorial

Banda Ceram Molucca & Timor Seas

Bay of Bengal

Celebes Sea

Gulf of Guinea

Gulf of Thailand

Indian Ocean

Java Sea

Pacific Ocean - North & South, Equatorial Belt (Costa Rica, Ecuador, Panama regions)

Philippine Sea

South China Sea

 

 

Seas and oceans in these latitudes could become inundated with macro algae, if the rafts of floating seaweed manage to navigate less hospitable barriers, such as colder regions. Which at the moment, Cape Horn and the Cape of Good Hope appear to offer some protection from invasion.

 

THESIS

 

This is a theory proposed by Nelson Kay (as a volunteer) in August of 2022, based on his work with the SeaVax team from 2016 - 2020. Though that exertion was mostly concerning micro and macro plastic recovery and river containment, the ocean engineering and logistical challenges posed by SeaVax are kindred concepts, and may be sympathetically adapted or even interchangeable to some degree. And may one day inspire others to devise a practical resolution.

 

Academics and scientific institutions inclined to test such thesis, or otherwise wishing to provide data or technological assistance, positive or negative, should please contact the Cleaner Ocean Foundation in the first instance. The aim being to prove or disprove the concept, to advance our knowledge in this little understood area of Oceanology/Oceanography. Students at all levels are most welcome, as are degree level students and post graduates looking to higher level qualifications, or simply to gain experience.

 

There are a million reasons for not doing something, and only one for taking up a challenge. Most people will use manifold negatives to sit back in their armchairs, and postulate. But, every now and again, someone is foolhardy enough to roll their sleeves up - and experiment - because they feel they must. Despite the enormity of the task. And that is how this website came about, in support of the SeaVax project in 2017.

 

 

 

 

Honduras, Caribean island with a tide of plastic, pictures by Caroline Power    

 

 

PLASTIC TIDE - These amazing pictures of a giant plastic tide were taken by Caroline Power. Please note how plastic and sargassum intertwine, creating a separation problem.

 

 

 

 

 

 

CARIBBEAN ISLANDS UNDER THREAT A-Z

 

Anguilla

Antigua and Barbuda

Aruba (Netherlands)

Bahamas
Barbados

British Virgin Islands

Caribbean Netherlands

Cayman Islands (UK)

Cuba

Curaçao (Netherlands)

Dominica

Dominican Republic (Hispaniola)

Grenada

Guadeloupe (France) 
Haiti (Hispaniola)
Jamaica
Martinique (France) 
Montserrat
Puerto Rico (US) 

Roatán

Saint Barthélemy

Saint Kitts and Nevis

Saint Lucia 

Saint Martin 

Saint Vincent and the Grenadines
Sint Maarten (Netherlands)

Tortuga

Trinidad and Tobago

Turks and Caicos Islands
United States Virgin Islands 

 

 

 

 

 

 

 

 

LINKS & REFERENCE

 

http://www.

 

 

 

...

 

 

 

 

 

 This website is provided on a free basis as a public information service. copyright © Cleaner Oceans Foundation Ltd (COFL) (Company No: 4674774) August 2022. Solar Studios, BN271RF, United Kingdom. COFL is a charity without share capital. The names AmphimaxRiverVax™ and SeaVax™ are trademarks.

 

 

 

 

 

WORLD PLAGUES GIANT SARGASSUM SEAWEED MIGRATIONS TO ALL OCEANS